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ABSTRACT

By means of easy examples, such as the Korteweg-de Vries, the Harry Dym,

the sine-Gordon equations, and the Hirota coupled system, it is shown how

nonlinear partial differential equations can be exactly solved by a direct 
Dro :

Copy

algebraic method. ,.

The physical concept, on which the method relies, is one of generation

and mixing of the real exponential solutions of the underlying linear

equations.

This approach leads in a straightforward way to single solitary waves of

pulse, kink and cusp shape.

The extension of the method towards the construction of multi-soliton

solutions and the connections with other direct methods are outlined.
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THE CONSTRUCTION OF IMPLICIT AND EXPLICIT SOLITARY-WAVE SOLUTIONS

OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Willy Hereman

1. IUTRODCTION

In 1978, a new direct method for generating exact solutions of

nonlinear partial differential equations (PDEs) of evolution and wave

type was independently established by Rosales
(l) and Korpel(2 )

The first investigator focused on the mathematical applicability

of a standard perturbation scheme to construct single and multi

solitary wave solutions of many famous evolution and wave equations.

Korpel looked at solitary wave formation from an engineering point of

view. Applying physical concepts borrowed from e.g. nonlinear optics,

he came to the conclusion that a pulse shaped solitary wave (e.g.

sech2 -type) can be decomposed into an obviously convergent infinite

series with real exponential terms. These exponentials are nothing

else than the subsequent harmonics of the real exponential solution,

characteristic of the linear dispersive medium.

Recently, Hereman et al(3 .4 ) aimed at unifying the mathematical

rigorous, but less transparent perturbation method and the heuristic

physics/engineering approach toward soliton construction. The

attentive reader will recognize the existing isomorphisms between

Rosales' iterative scheme and our recursive system, between the

solution techniques and the summation procedures applied to the

resulting infinite series expansions.

In this paper we illustrate by means of rather easy examples how

the physical interpretation deepens the understanding of solitary wave

formation. Lack of space does not permit us to elaborate on the

complementary mathematical details, which can be learned from earlier

work(1 '4 ,5 ) on the subject.

Mathematics Department, University of Wisconsin-Madison, Madison, WI 53706.
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Advocating a pedagogical approach, we first construct the

well-known hyperbolic secant squared solution of the Korteweg-de Vries

equation (KdV), working our way up to the derivation of the

multi-soliton solution of the sine-Gordon equation (sG) as a finale.

In between, we solve the Harry Dym (ED), the coupled Korteweg-de Vries

(cKdV) and the sine-Gordon equation, for which the construction of

single solitary waves is of intermediate level of difficulty.

Wherever appropriate we indicate connections with various other

(6)(7direct methods (Trace method Hirota's bilinear formalism(7 ) and its

(8.9)(11)clones ' Fredholm determinant method (I0 'II) direct

linearization(12), direct integration(1 3 ), etc.). In this manner we

outline the general framework in which this contribution fits.

2. THE KORTEWEG-DE VRIES EQUATION

The celebrated KdV

Ut + auu, + u3. 0, aCE, C)

wherein subscripts indicate partial derivatives (e.g. u3x - a3u/ 3x),

describes shallow water waves, ion-acoustic waves in plasmas, the

dynamics of a nonlinear lattice, etc.

Using (1) as a paradigm, we sketch our direct algebraic method in

ten steps, confining ourselves to a single solitary wave.

i) Searching for a stationary solution, we introduce a moving frame

of reference by assuming u(x.t) - #(f), where f - x - vt.

The constant v refers to the anticipated travelling wave

velocity. Doing so, PDE () can be replaced by the ODE

-2-



-v# + a# f+ # f 0(2)

Ci) For mathematical convenience, we next integrate (2), yielding

-v4 +(a/2)# 2 + #2 f + CmO. (3)

where CC is some integration constant.

(iii) We will allow travelling wave solutions to have a Constant termn

o. Upon substitution of *-o + *into (3), we get

2a(ctc-v)o + (a/2)# + 0f+ o(-v+(ac/2)+C) - 0 .(4)

(iv) Adhering to the intuitively simple mdl()of solitary wave

formation, we solve the linearized version of (4), (i.e. ignore

the second term) for real exponential solutions in the form

#Q exp(k(v)f). Obviously the dispersion law,

k2Cv) -v - ao- 2C - v, follows provided c - C2/a)Cv-C).

Observe that both decaying and rising exponentials are possible.

For the remainder we will work with the decaying solution,

denoted by

g(~ -expC-kf). k - 2-v .(5)

2
(v) Appropriate scaling by * (2/a)C2C-v)I (2k /a)I, simplifies

(4) into

-3-



-i + ;2 + C1/k 2 ); - o . (6)

(vi) According to lorpel's model(2), the quadratic nonliuearity in

(6) will square the linear solution g. Subsequently, g and

g2 now being present, in the next step the nonlinearity

3 4
generates g and g Proceeding in this way, any integer

power of g will be created. In the optics terminology,

angn - anexp(nkx-nwt), with wave number k and angular

frequency w - kv, represents the nth harmonic wave with

amplitude an. For n - 1, we refer to alg as the

fundamental (wave). This heuristic principle gave impetus to

the search for an exact solution (to the nonlinear equation) in

the form

i ian gn (f) "(7)

x-1

(vii) To determine the coefficients an, we substitute (7) into (6)

and apply Cauchy's rule (3'4 ) to recollect equal powers in g.

This results in an infinite hierarchy of equations:

n-i

C 2 )a + ae an- e O n 2 , (8)
a-i

starting with an arbitrary (positive) constant al. To the

physicist, the recursion relation (8) for the amplitudes merely

describes the mechanism of energy transfer into successive

modes.

-4-



(viii) Solving the system (8) recursively, we recognize that

an - 6n(-l)n an  a - a1 /6 > 0, n C V (9)

In an earlier paper (4 ) we discussed various techniques to solve

systems similar to (8), how to recognize the general solution

and how to verify it.

(ix) The last but one step aims at the summation of the resulting

infinite series

-6 C-l)n+In(ag)n  (10)

n-l

which converges only for sufficiently large F. into its closed

form

- 2eag/Cl+ag) (11)

which is valid everywhere.

(x) Finally, writing (11) in the original variables x and t,

gives

u~xt) - (2/a)(v-C) + (3/a)(2C-v)sech2 ( ,/2C-v(x-vt) + 6) (12)

The single solitary wave solution (12) depends on three arbitrary,

unrelated constants v.C and 6 - l(l/a). Observe that for the

particular choices C - v > 0 and C - v/4 < 0. we obtain the

familiar pulse-type solution,

-N-,n



uCXt) - C(3v/a)sech 2 1V'(x-vt) + 6) (13)2

and wel-type solution

uCxt) - (3v/2a)tanh2 ({-_vx2(x-vt) + 6) .(14)

Of course, finding the solitary wave form (12) is neither original nor

a great achievement; it has been obtained by half a dozen different

methods(1 4 -1 7 ) , but this method clearly reveals the physical mechanism

behind solitary wave formation.

3. THE HARRY DYX EQUATION

The prototype of equation for so-called cusp (or spiky) solitary

wave solutions is the Harry Dym equation(18 -21),

ut + (l-u) u3x -0, (15)

or any equivalent form(1 9) . which occurs in connection with the

classical string problem.

The presence of a cubic nonlinearity in the coefficient of the

dispersive term u3x drastically changes the nature of the most

elementary particular solution (20 ,21), i.e.

-6-



u(Xt) - sech 2 {!v[x-vt+6(x,t)]) ,(16)

where the time and space dependent phase 6 is governed by the

transcendental equation

6(xt) - + 22-v)ah-vv[-t6xt)(7

where c is an arbitrary constant. This implicit solution was

obtained through the inverse scattering technique (IST).

Straightforward application of our method to (15), which

accidentally has the same linearized version as the KdV (1), does not

lead to any solution. Obviously, we must relax our approach by

introducing the new variable.

f(xt) - k[x-vt+6(xt)] , (18)

and then search for solutions u(x,t) - F(f), with k6(x,t) -G(f),

where both F and G remain to be determined.

Through the operator relations

8. -kv d. a. k d. (19)
j T--Gdf ' x -G d f

f f

(15) is transformed into

-kvFf + k3 (1-F) 3(1-Gf)-4{(FfG f+3F2 fG2 f)(1-Gf)

+ P (1-G) 2 + FG 2  - 0 (20)

3f f f 2f

-7-



Clearly, Gf - F is the right choice to simplify (20) to

(-v/k )(1-F)Ff + [4FfFf(1-F)+Ff(1-F)2 +3F ] - 0 (21)f f(21)f

After division throughout by (-F) 4 , followed by a first integration

(introducing constant cl), a subsequent multiplication by Ff and

another integration (constant 02). we arive at

Ff - (1-F)[(v/k2_o2)+(o20 - )F+OF2 . (22)

Seeking for a solitary wave, we add the boundary conditions

F,FfV,2f -* 0 as Il * m. Therefore, set I -c 02 - v/k, and

readily integrate (22), yielding

F(f) - sech2 {vf//2k)(f+c3 )} , (23)

where 03 is the final integration constant. With the definition (18)

of f, we thus obtain solution (16). Regarding the choice Gf - F,

G - kS; after integration of (23) we retrieve (17), wherein

o - (03 +04 )/k and c3  is absorbed in 5. Other relevant solutions of

(22). as listed e.g. by Drazin(22) are presently under

investigation (19)

Although we decided in favor of direct integration of (21),

application of our direct method would effortless have led to

(16)-(17). Hence, in conclusion, a slight generalization of our method

broadens the class of retrievable solutions to implicit ones.

-8- b



4. TEE COUPLED KORTEFEG-DE VRIES EQUATIONS

To extract further information about the applicability of our

technique let us investigate how it would fare on a famous coupled

system(2 3 29 )

ut- a(6uu x+u) - 2pwwx -o , (24)

wt + 3iw 1  wzx 0. aP C . (25)

These equations describe the interaction of two long waves with

different dispersion laws. The coupled system is often referred(24,25)

to as the coupled KdV equations, as for w - 0 it reduces to the .t

KdV in u. Sometimes (24)-(25) is quoted (26-28 ) as the Hirota-Satsuma

system after the two investigators that first solved it using a quite

ingenious bilinear formalism 
(7 '2 4 )

(29)In a forthcoming paper we will prove that if u is of

travelling wave form, say u(x,t) - *(f), with - x - vt, then w

exhibits the same form, hence w(x,t) - ( Thus we must solve

V# + 3a#2 + a# 2 f + IP -o , (26)

- v + 3#p + 4, - 0 (27)

ignoring integration constants here. Substitution of g(f) - exp(-kf)

into the linear parts of (26)-(27), leads to two dispersion laws,

v - -ak2  and v - k2 . According to our philosophy, the nonlinear
9-
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solutions * and 4 can only be built up from the same real

exponential if a - -1. A profound study (29 ) reveals that either one

of the dispersion laws leads to the same exact solutions. Hence, let

us proceed with k - vv, v > 0.

Upon substitution of the scaled series representations,

* . agn( ) , -. vy_ bngn(f) , (28)
n- n n-

into (26)-(27), we arrive at

(12) + (aa e+eb b - n 2 , (29)

n-I "

n(n2-1)bn + ' Ibe anO e  0 n 2 ,(3)

e-l

together with (l+a)a1 - 0, bI  arbitrary, and where e - +1 (e - -1)

if P > 0 (P < 0).

Two interesting cases pop up:

i) For a A -1, so a1 - 0, we straightforwardly obtain

a~n 24()n+inLAn ,
a - 24( b2 n - 0, n C V\{0} , (31)

a2n+l 0, b 2n+ -(-l)nb 1 A
n, n C1 , (32)

-nzo- ni



requiring A - -eb2 /24(4a+l) > 0, hence P and 4a + 1 must

have opposite signs. With (3l)-(32) the solutions (28) then

become

028v (1)n+ln(Ag2) n - 8vAg2 (33)

n-1 (+Ag )

V (_l)nblAn 2 n+l - vb1  (34)

n-0 113113 (l+Ag 2

Returning to the original variables, we obtain

u(x,t) - 2v sech2 [(V'(x-vt)+b1 , (35)

w(x,t) - ±v1-2(4a+l)/3 sech[ v'(x-vt)+5] , (36)

With 6 - !en124(4a+l)/b I. Note that the cKdV indeed remains

invariant for reversing the sign of w. For a - -1/4, clearly

bn - 0, Vn C V; so w - 0 and the cKdV reduces to the KdV (1)

with a - 6. Replacing t by t/4, v by 4v, from (13) we get

(35). We should remark that (36) is a special case of a solution

(27)
obtained by the dressing operator technique Furthermore, for

a - 1/2 the cKdV are known to be completely integrable(25) it

has the Painleve property 26) and a N-soliton solution(24 ) .

-11-



(ii) For a - -1, apparently al is arbitrary and so is bI.

Recursively, one can calculate all an  and bn in the hope to

obtain the general closed form, which we do not know yet.

However, for b2 - a2 /2 and P > 0 (so e - 1) we obtained
an  1n(-ln+l n

a - 12n(-l) an, b2 - a 2/2, with a - al/12. Substitutionn n n
into (28), leads to

u(z~t) - v sech2 [1-[(x-vt)+5] (37)2
v(x,t) - (3/V'6-F) u(xt) - (3v/A-FP7) sech2 [1 /v'(x-vt)+6], (38)2

with 6 - . en(12/a1 ). Observe that for v - 3u Av' both

equations (24)-(25) become identical to the KdV (1) with a - 3,

(13) then being the same as (37).

5. THE SINE-GORDON EQUATION

The sG equation, in light cone coordinates,

uxt - sin u, (39)

describes the propagation of crystal dislocation superconductivity in

a Josephson junction, ultrashort optical pulse propagation in a

(1586,2resonant medium, etc. (  "
) . For the mathematician, (39) is long

known in the differential geometry of surfaces of constant negative

(orvature(18'16)"

-12-



At the cost of dealing with one equation with a transcendental (1)

nonlinearity, we rather transform the sG into a nonlinear coupled

system with strictly polynomial terms:

-x - 0 O - 0, (40)

2* + #2 + 02 . 0 ,(41)

where 0 -u 1 , -(Cos U) -1

To construct a single solitary vave, we proceed as in section 4,

focusing on steady solutions *() (x,t), #C) (x,t) with

- -vt. Expanding the scaled functions as

* - (i/v-) a~gnf(), 0. - b bgnCf) .(42)

U-i n-1

with g(f) -expC-kf), we obtain

n-1
(n_)n-Iab1-0n2 (43)

Cn-1)a -1LabaO n 2

n-1

2bn + I (bebn-e+e(n-e)aan-e) -0 , n 2 *(44)

e-1

where we used the dispersion law k -i/v, v > 0, to simplify.

Iterative calculation suggests

-13-



"2n - 0. b2n - 8(-l)na 2n, n c H\{0} , (45)
. 4(l~n 2 n + 1
-2n+l , b2 n+1 m O n c1 , (46)

where a - a1/4 > 0. Upon substitution into (42), we find

S- (4/1V'v) ( l)nag)2 n+l - 4vr v ag (47)

n-0 
l+(ag)2

+ = -8 1 (-i)n+ n(ag2n - -8(ag)2 (48)

n-i 
[l+(ag) ]2 2

In the variables x and t, we thus get

(CoOs u(x,t)) - 1 - 1 -.2 sech2 [(1/v-v)(x-vt)+6] , (49)

uxt) _ 2 1 sech[(l/v-)(x-vt)+6]dx

- ±4 arctan{exp[(1/v -)(x-vt)+6]} , (50)

with a - en(4/a1). This is the well-known kink-type solution of the

sine-Gordon equation(11,15,16)

6. 1-SOLITON SOLUTIONS

The most effeotive techniques to construot N-soliton solutions

are inverse soattering( 15-18,22) and Hirota's method (7 ,15,16), the

latter being olosely linked (1 ,26 ,30 ) to all other (often iterative)

-14-
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procedures listed in the introduction. Neither of these methods is

very transparent in explaining why N-solitons are the way they are.

(4)
In the spirit of an earlier paper , where we showed how the

N-soliton solution to the KdV could be built up from N real

exponentials, we construct the N-soliton solution of the sG (39),

using (40) and (41). Emphasis is again on physical relevance, more

than on mathematical rigor.

Motivated by the fact (4 ) that multi-soliton solutions evolve from

the mixing of real exponential solutions of the underlying linear

equation, we substitute

N N
0(1) 0 i ogiCx't) a ciai exp(kix-wit) , (51)

i-i i-i1.

into the linear part of (40), implying w " -1/k i -, -

The constants ci(ki) will be fixed later. Observe that the starting

term in the expansion of ', say 1F2) must be of the form

N N
- ( dij gigj , (52)

i-i J-1

so that -2$(2) balances the term

2 N N
. ~ oojwyjgigJ (53)

-i -i 1

-15-



in (41). Thus, with the dispersion law wi" -1/ki . we find

d i 0caCiW 1 0 1  0ia C oo j j (54)lj -2 1 - -2 k kj  2 1 ki+ki

Note that any term in the expansion of 0 (', respectively) will only

have an odd (even, respectively) number of g's, which is in agreement

with (47) and (48).

The analogue of the first term in (43), i.e. (n2-1)a n will

result from the action of the linear operator

82.-
L- -20 1 (55)

on the (2n+l)th term in the expansion of 0, namely

N N N
*(2n+1) 0 "ij ...a i j '" gs , n C V\[Ol. (56)

2n+1 summations

The analogue to the second term in (43) will, in its most symmetric

form, look like

n-i
I 'v (2t+1)( . n2) (k k *---k)

e -0
28+I arguments 2(n- e) arguments

+ ,(2n-2e) (k k... k #(2f+1) (km kn ''''ks) (57)

2(n-e) arguments 2e+I arguments

-16-



The analogue to (44) reads

N N N
(2n) -- d *. r "*gj ' gr

i-i j -i r-i

2n summations

n-iM _1%! *(21 )(k k -k (2n-2t) (ko~k_,...kr
n) r

2e arguments 2(n-e) arguments

n-1

+ 2 0(2 8+1) (k ,kJ,. O k t2n-2t1) (k ,k -- ,k ) nl 1, (58)

2e+1 arguments 2(n-e)-I arguments

allows to subsequently determine the coefficients dij...r

To make this less obscure, let us give an example. ,(1) and

(2) being computed, we equate

N N N

i-i J-1 k-1

2 2 2 (ki+k i) (ki +kk) (k+ki) (cijk/Ikikjk )gigj gk  (59)

to

-17-
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-(1)k ((J2) (k ()2)(kk )OW60)

-k~ )(k +k)k~i(i 0 /k k (60)

i-i j-1 k-i

therefore cijk - -1/[4(ki+kj)(kj+kk)] if we set ci - 1. After some

lengthy calculations, partly carried out with MACSYMA (i.e. a large

scale computer program that performs algebraic manipulations), we

obtain

0 j ..- (-1)n4-n[(k i+k )(k j+kk)---.(k r+ks)] - l, n E M°ij...s -~' i

M-1 1-2n-1d ij ... r - (-l)n-l 2 nW+W +...+&r)[(ki+k )(k+kk)...(k +kr)]

n C V\{0}. (61)

The final objective is then to write

N N N N
(2n+1) I gi +  I(_) igk) +

U-0 i-i i-1 j-1 k-i k+k k+kk)

N N N

+ 2 2**2(_1 )n(.I)n g .. gs
S.( ki+k )(k J+kk)'(kr+ks) +.... (62)

i-I J-1 s-i

B-15

and a similar expression for *, in their closed forms. Various

authors (1 ,5,6 11 31 ) have shown that this can be done by introducing

the N x N matrices I (unity) and B, with elements

-18.-
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B " 1 exp -'(k +k )x_( l+W )t] (63)i 2ki+k) 2

The N-soliton solution to the sine-Gordon equations (40)-(41) is then

found to be

O(x,t) - 4[Tr(arctan B)] x  (64)

*Czt) - -2[n(det(I+B2 ))xt , (65)

while, regarding 0 - ux

u(x,t) - 14 Tr(arctan B) - i Tr (en - (66)

satisfies (39).
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